In $$\triangle ABC, AC = 8.4 cm$$ and $$BC = 14 cm$$. P is a point on AB such that CP= 11.2 cm and $$\angle ACP = \angle B$$. What is the length (in cm) of BP?
$$\triangle ACP ~ \triangle ABC
($$\because \angle$$ A is common and $$\angle ACP = \angle B$$)
$$\frac{AB}{AC} = \frac{BC}{CP} = \frac{AC}{AP}$$
From first two,
$$\frac{AB}{AC} = \frac{BC}{CP}$$
$$\frac{AB}{8.4} = \frac{14}{11.2}$$
AB = 10.5
From last two,
$$\frac{BC}{CP} = \frac{AC}{AP}$$
$$\frac{14}{11.2} = \frac{8.4}{AP}$$
AP = 6.72 cm
BP = AB - AP = 10.5 - 6.72 = 3.78 cm
Create a FREE account and get: