In a $$\triangle$$ABC, $$\angle$$ABC = 2$$\angle$$CAB, If the side BC is extended to D and $$\angle$$ACD = 126$$^\circ$$, then $$\angle$$CAB is:
Let $$\angle$$CAB = x
Given, Â $$\angle$$ABC = 2$$\angle$$CAB
$$=$$> Â $$\angle$$ABC = 2x
In $$\triangle$$ABC,
$$\angle$$ACD is the exterior angle at point C which is equal to the sum of the interior angles at points A and B
$$=$$> Â $$\angle$$ABC +Â $$\angle$$CAB =Â $$\angle$$ACD
$$=$$>Â 2x + x =Â 126$$^\circ$$
$$=$$>Â 3x =Â 126$$^\circ$$
$$=$$>Â Â x =Â 42$$^\circ$$
$$=$$> Â $$\angle$$CAB =Â 42$$^\circ$$
Hence, the correct answer is Option B
Create a FREE account and get: