If the value of $$(a+b-2)^{2}+(b+c-5)^{2}+(c+a-5)^{2}=0$$, then the value of $$\sqrt{(b+c)^{a}+(c+a)^{b}-1}$$ is:
$$(a+b-2)^{2}+(b+c-5)^{2}+(c+a-5)^{2}=0$$
LHS:
$$(a+b-2)^{2}+(b+c-5)^{2}+(c+a-5)^{2}
=Â $$(0)^{2}+(0)^{2}+(0)^{2}
= 0
=RHS
a + b - 2 = 0
a + b = 2 ---(1)
b + c - 5 = 0
b + c = 5 ---(2)
c +a - 5 = 0
a + c = 5 ---(3)
Eq(1) +Â (2) +Â (3),
2(a + b + c) = 2 + 5 +Â 5
a + b + c = 6
put the value from eq(1),
2 + c = 6
c = 4
From eq(2),
b + 4 = 5
b = 1
From eq(1),
a + 1 = 2
a = 1
$$\sqrt{(b+c)^{a}+(c+a)^{b}-1}$$
=Â $$\sqrt{(5)^{a}+(5)^{b}-1}$$
= $$\sqrt{(5)^{1}+(5)^{1}-1}$$
= $$\sqrt{9}$$ = 3
Create a FREE account and get: