The value of $$\frac{33}{40}+\frac{1}{5}\left[\frac{4}{5}-\frac{1}{5}\times\left(\frac{7}{8}-\frac{5}{4}\right)\right]$$ is:
$$\frac{33}{40}+\frac{1}{5}\left[\frac{4}{5}-\frac{1}{5}\times\left(\frac{7}{8}-\frac{5}{4}\right)\right]=\frac{33}{40}+\frac{1}{5}\left[\frac{4}{5}-\frac{1}{5}\times\left(\frac{7-10}{8}\right)\right]$$
$$=\frac{33}{40}+\frac{1}{5}\left[\frac{4}{5}-\frac{1}{5}\times\left(\frac{-3}{8}\right)\right]$$
$$=\frac{33}{40}+\frac{1}{5}\left[\frac{4}{5}-\left(\frac{-3}{40}\right)\right]$$
$$=\frac{33}{40}+\frac{1}{5}\left[\frac{4}{5}+\frac{3}{40}\right]$$
$$=\frac{33}{40}+\frac{1}{5}\left[\frac{32+3}{40}\right]$$
$$=\frac{33}{40}+\frac{1}{5}\left[\frac{35}{40}\right]$$
$$=\frac{33}{40}+\frac{7}{40}$$
$$=\frac{40}{40}$$
$$=1$$
Hence, the correct answer is Option C
Create a FREE account and get: