The expression $$3 \sec^2 \theta \tan^2 \theta + \tan^6 \theta - \sec^6 \theta$$ is equal to:
$$3 \sec^2 \theta \tan^2 \theta + \tan^6 \theta - \sec^6 \theta$$
= $$-3 \sec^2 \theta \tan^2 \theta(\tan^2 \theta -Â \sec^2 \theta) + \tan^6 \theta - \sec^6 \theta$$
($$\because \tan^2 \theta - \sec^2 \theta = -1$$)
=Â ($$\tan^2 \theta - \sec^2 \theta$$)^3
($$\because(a - b)^3 = a^3Â - b^3 - 3ab(a - b)$$)
= $$(-1)^3$$ = -1
Create a FREE account and get: