In $$\triangle$$ABC, $$\angle$$A = 50$$^\circ$$. If the bisectors of the angle B and angle C, meet at a point O, then $$\angle$$BOC is equal to:
BO is the bisector of angle B.
Let $$\angle$$OBC =Â $$\angle$$OBA = y
CO is the bisector of angle C.
Let $$\angle$$OCA = $$\angle$$OCB = x
From $$\triangle$$ABC,
$$\angle$$A +Â $$\angle$$B +Â $$\angle$$C =Â 180$$^\circ$$
50$$^\circ$$ + 2y + 2x =Â 180$$^\circ$$
2(x+y) =Â 130$$^\circ$$
x + y =Â 65$$^\circ$$......(1)
From $$\triangle$$OBC,
$$\angle$$OBC + $$\angle$$OCB + $$\angle$$BOC = 180$$^\circ$$
y + x +Â $$\angle$$BOC =Â 180$$^\circ$$
65$$^\circ$$ + $$\angle$$BOC =Â 180$$^\circ$$ [From (1)]
$$\angle$$BOCÂ =Â 115$$^\circ$$
Hence, the correct answer is Option D
Create a FREE account and get: