If $${\sqrt{6}}tan\theta=\sqrt{2}$$ and $$0^\circ<\theta<45^\circ$$, then the value of $$sin\theta+\sqrt{3}cos\theta-2tan^2\theta$$ is
Given : $${\sqrt{6}}tan\theta=\sqrt{2}$$
=> $$tan\theta=\frac{\sqrt2}{\sqrt6}=\frac{1}{\sqrt3}$$
=> $$\theta=30^\circ$$
$$\therefore$$Â $$sin\theta+\sqrt{3}cos\theta-2tan^2\theta$$
= $$sin(30^\circ)+\sqrt3cos(30^\circ)-2tan^2(30^\circ)$$
= $$\frac{1}{2}+(\sqrt3\times\frac{\sqrt3}{2})-2(\frac{1}{\sqrt3})^2$$
= $$\frac{1}{2}+\frac{3}{2}-\frac{2}{3}$$
= $$\frac{3+9-4}{6}=\frac{8}{6}=\frac{4}{3}$$
=> Ans - (B)
Create a FREE account and get: