If $$\cos x = \frac{-\sqrt3}{2} and \pi < x < \frac{3\pi}{2}$$, then the value of $$2 \cot^2 x - 3 \sec^2 x$$ is:
Given, Â $$\cos x = \frac{-\sqrt3}{2}$$
$$=$$> Â $$\sec x=\frac{-2}{\sqrt{3}}$$
$$\therefore\ $$ $$2\cot^2x-3\sec^2x=\frac{2}{\tan^2x}-3\sec^2x$$
$$=\frac{2}{\sec^2x-1}-3\sec^2x$$
$$=\frac{2}{\left(\frac{-2}{\sqrt{3}}\right)^2-1}-3\left(\frac{-2}{\sqrt{3}}\right)^2$$
$$=\frac{2}{\frac{4}{3}-1}-3\left(\frac{4}{3}\right)$$
$$=\frac{2}{\frac{4-3}{3}}-4$$
$$=6-4$$
$$=2$$
Hence, the correct answer is Option B
Create a FREE account and get: