Question 62

If $$\cos x = \frac{-\sqrt3}{2}  and  \pi < x < \frac{3\pi}{2}$$, then the value of $$2 \cot^2 x - 3 \sec^2 x$$ is:

Solution

Given,  $$\cos x = \frac{-\sqrt3}{2}$$

$$=$$>  $$\sec x=\frac{-2}{\sqrt{3}}$$

$$\therefore\ $$ $$2\cot^2x-3\sec^2x=\frac{2}{\tan^2x}-3\sec^2x$$

$$=\frac{2}{\sec^2x-1}-3\sec^2x$$

$$=\frac{2}{\left(\frac{-2}{\sqrt{3}}\right)^2-1}-3\left(\frac{-2}{\sqrt{3}}\right)^2$$

$$=\frac{2}{\frac{4}{3}-1}-3\left(\frac{4}{3}\right)$$

$$=\frac{2}{\frac{4-3}{3}}-4$$

$$=6-4$$

$$=2$$

Hence, the correct answer is Option B


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App