D is the midpointof side BC of $$\triangle ABC$$. Point E lies on AC such that $$CE = \frac{1}{3}AC$$. BE and AD intersect at G. What is $$\frac{AG}{GD}$$?
D is mid point of BC.
To apply the mid poingt theorem in ADM,
$$\frac{AG}{GD} =Â \frac{AE}{EM}$$
AE = $$\frac{2AC}{3}$$Â
EC = $$\frac{AC}{3}$$
EM = $$\frac{EC}{2}$$ = $$\frac{\frac{AC}{3}}{2}$$
= $$\frac{AC}{6}$$
$$\frac{AG}{GD} = \dfrac{\frac{2AC}{3}}{\frac{AC}{6}}$$ = 4 :Â 1
Create a FREE account and get: