Question 62

D is the midpointof side BC of $$\triangle ABC$$. Point E lies on AC such that $$CE = \frac{1}{3}AC$$. BE and AD intersect at G. What is $$\frac{AG}{GD}$$?

Solution

D is mid point of BC.

To apply the mid poingt theorem in ADM,

$$\frac{AG}{GD} = \frac{AE}{EM}$$

AE = $$\frac{2AC}{3}$$ 

EC = $$\frac{AC}{3}$$

EM = $$\frac{EC}{2}$$ = $$\frac{\frac{AC}{3}}{2}$$

= $$\frac{AC}{6}$$

$$\frac{AG}{GD} = \dfrac{\frac{2AC}{3}}{\frac{AC}{6}}$$ = 4 : 1


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App