The volume of a right circular cone is 2464 $$cm^3$$ If the radius of its base is 14 cm, then its curved surface area (in $$cm^2$$ ) is: (Take $$\pi=\frac{22}{7}$$)
Volume of a cone=$$(1/3)\pi r^{2}h$$
$$(1/3)*(22/7)* 14^{2}h$$=2464
h=2464*7*3/(22*196)
h=12 cm
We know that in a cone slant height=$$\sqrt{h^{2}+r^{2}}$$
l=$$\sqrt{14^{2}+12^{2}}$$
l=$$\sqrt{340}$$
l=2$$\sqrt{85}$$
Curved surface area of a cylinder=$$2\pi r l$$
=2*(22/7)*14*2$$\sqrt{85}$$
=88$$\sqrt{85}$$
Create a FREE account and get: