Question 61

In $$\triangle$$ABC, right angled at B, if cot A = $$\frac{1}{2}$$, then the value of $$\frac{\sin A(\cos C + \cos A)}{\cos C(\sin C - \sin A)}$$ is

Solution

cot A = $$\frac{\text{Adjacent side}}{\text{Opposite side}}$$ $$\frac{1}{2}$$

$$\frac{\sin A(\cos C + \cos A)}{\cos C(\sin C - \sin A)}$$ = $$\frac{\frac{2}{\sqrt{5}}\left(\frac{2}{\sqrt{5}}+\frac{1}{\sqrt{5}}\right)}{\frac{2}{\sqrt{5}}\left(\frac{1}{\sqrt{5}}-\frac{2}{\sqrt{5}}\right)}$$

= $$\frac{\left(\frac{3}{\sqrt{5}}\right)}{\left(-\frac{1}{\sqrt{5}}\right)}$$

= -3

Hence, the correct answer is Option B


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App