In $$\triangle$$ABC, right angled at B, if cot A = $$\frac{1}{2}$$, then the value of $$\frac{\sin A(\cos C + \cos A)}{\cos C(\sin C - \sin A)}$$ is
cot A =Â $$\frac{\text{Adjacent side}}{\text{Opposite side}}$$Â $$\frac{1}{2}$$
$$\frac{\sin A(\cos C + \cos A)}{\cos C(\sin C - \sin A)}$$ =Â $$\frac{\frac{2}{\sqrt{5}}\left(\frac{2}{\sqrt{5}}+\frac{1}{\sqrt{5}}\right)}{\frac{2}{\sqrt{5}}\left(\frac{1}{\sqrt{5}}-\frac{2}{\sqrt{5}}\right)}$$
=Â $$\frac{\left(\frac{3}{\sqrt{5}}\right)}{\left(-\frac{1}{\sqrt{5}}\right)}$$
= -3
Hence, the correct answer is Option B
Create a FREE account and get: