Expression : cot(A + B) = x
= $$\frac{cos(A + B)}{sin(A + B)}$$
= $$\frac{cosAcosB - sinAsinB}{sinAcosB + cosAsinB}$$
Dividing both numerator and denominator by $$(sinAsinB)$$, we get :
= $$\frac{cosAcosB - sinAsinB}{sinAsinB} \div \frac{sinAcosB + cosAsinB}{sinAsinB}$$
= $$(\frac{cosAcosB}{sinAsinB} - 1) \div (\frac{cosB}{sinB} + \frac{cosA}{sinA})$$
= $$\frac{cotAcotB - 1}{cotB + cotA}$$
=> Ans - (C)
Create a FREE account and get: