Question 61

If $$a^2 + b^2 = 169, ab = 60, (a > b)$$, then $$(a^2 - b^2)$$ is equal to:

Solution

Given $$a^2 + b^2 = 169, ab = 60, (a > b)$$

$$(a+b)^{2}=a^{2}+b^{2}+2ab$$
$$(a+b)^{2}=169 + 2\times60=289$$
$$(a+b)=17$$

ab=60, so a = $$\frac{60}{b}$$

Now, (a+b)=17

         $$\frac{60}{b}$$+b=17

$$b^{2}-17b+60=0$$
$$b^{2}-12b-5b+60=0$$
b(b-12)-5(b-12)=0
b=12 and 5 ...neglect b=12 because a>b given
So,a=12

$$(a^2 - b^2)= (a+b)(a-b)$$=$$17\times7=119$$

Video Solution

video

Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App