If $$A = 8 \div 4 \times (3 - 1) + 6 \times 3 \div 2 of 3 and B = 4 \div 8 \times 2 + 7 \times 3$$, then what is the value of $$A + B$$?
Applying the BODMAS { priority brackets > of > division > multiplication > addition > subtraction }
To solve A , first solve the subtraction in the brackets i.e (3-1) = 2
simplifying A, we get
$$A = 8 \div 4 \times 2 + 6 \times 3 \div 2 of 3 $$ = $$\frac{8}{4}\times 2 + \frac{6 \times 3}{6}$$ ( here 2 of 3 is $$2\times 3$$ = 6)
A= 7
similarly applying BODMAS we solve for B
$$B = 4 \div 8 \times 2 + 7 \times 3$$ =Â $$B = \frac{4}{8} \times 2 + 7 \times 3$$ = 22
B = 22
A+B = 7+22 = 29
Create a FREE account and get: