Question 61

If $$A = 8 \div 4 \times (3 - 1) + 6 \times 3 \div 2  of  3  and  B = 4 \div 8 \times 2 + 7 \times 3$$, then what is the value of $$A + B$$?

Solution

Applying the BODMAS { priority brackets > of > division > multiplication > addition > subtraction }

To solve A , first solve the subtraction in the brackets i.e (3-1) = 2

simplifying A, we get

$$A = 8 \div 4 \times 2 + 6 \times 3 \div 2  of  3 $$ = $$\frac{8}{4}\times 2 + \frac{6 \times 3}{6}$$ ( here 2 of 3 is $$2\times 3$$ = 6)

A= 7

similarly applying BODMAS we solve for B

$$B = 4 \div 8 \times 2 + 7 \times 3$$ = $$B = \frac{4}{8} \times 2 + 7 \times 3$$ = 22

B = 22

A+B = 7+22 = 29


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App