If $$(27x^3 - 343y^3) \div (3x - 7y) = Ax^2 + By^2 + 7Cyx$$, then the value of (4A - B + 5C)is:
As per the given question,
$$(27x^3 - 343y^3) \div (3x - 7y) = Ax^2 + By^2 + 7Cyx$$
We know that $$a^3-b^3=(a-b)(a^2+b^2+ab)$$
Now, $$(27x^3 - 343y^3) \div (3x - 7y) = (3x)^3-(7y)^3$$
$$=(3x-7y)(9x^2+49y^2+21xy)\div (3x-7y)=(9x^2+49y^2+21xy)$$
Hence $$9x^2+49y^2+7\times 3 xy=Ax^2 + By^2 + 7Cyx$$
By comparing of left and right coefficient of respective elements.
A=9, B=49, C=3
Now substituting the values $$(4A - B + 5C)=4\times 9-49+5\times 3=36+15-49=51-49=2$$
Create a FREE account and get: