Question 60

What is the difference between the mean and the median of the following data:
5, 7, 8, 13, 12, 14, 9, 2, 26, 10 ?

Solution

First, arrange the given data in ascending order from left to right.

2, 5, 7, 8, 9, 10, 12, 13, 14, 26

There are ten numbers. So n = 10.

median = $$\frac{\left(\frac{n}{2}\right)^{th}\ term\ +\ \left(\frac{n}{2}+1\right)^{th}\ term}{2}$$

= $$\frac{\left(\frac{10}{2}\right)^{th}\ term\ +\ \left(\frac{10}{2}+1\right)^{th}\ term}{2}$$

= $$\frac{5^{th}\ term\ +\ \left(5+1\right)^{th}\ term}{2}$$

= $$\frac{5^{th}\ term\ +\ 6^{th}\ term}{2}$$

= $$\frac{9+10}{2}$$

= $$\frac{19}{2}$$

= 9.5

mean = $$\frac{sum\ of\ data}{number\ of\ data}$$

= $$\frac{2+5+7+8+9+10+12+13+14+26}{10}$$

= $$\frac{106}{10}$$

= 10.6

difference between the mean and the median = 10.6-9.5

= 1.1


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App