$$\triangle$$ ABC is an equilateral triangle and AD $$\perp$$ BC, where D lies on BC. If AD = $$4\sqrt{3}$$ cm, then what is the perimeter (in cm) of $$\triangle$$ABC?
AD = $$4\sqrt{3}$$ cm
In right angle $$\triangle$$ ABD,
($$\because \angle D = 90\degree$$)
ByPythagoras,
$$(AB)^2 = (AD)^2 +Â (BD)^2$$
(AB = AC =Â BC)
(BD = BC/2 = AB/2)
$$(AB)^2 -Â (BD)^2 = (AD)^2 $$
$$(AB)^2 - (\frac{AB}{2})^2 = (4\sqrt{3})^2 $$
$$\frac{3}{4}(AB)^2= 48Â $$
$$(AB)^2 = 64$$
AB = 8 cm
Perimeter of $$\triangle ABC = 3 \times side = 3 \times$$ 8 = 24 cm
Create a FREE account and get: