In a triangle ABC, if $$\angle A$$ + $$\angle C$$ = 140° and $$\angle A$$ + 3 $$\angle B$$ = 180° then $$\angle A$$ is equal to
Given : $$\angle A$$ + $$\angle C$$ = 140° ----------(i)
and $$\angle A$$ + 3 $$\angle B$$ = 180° ------------(ii)
To find : $$\angle A$$ = ?
Solution : In $$\triangle$$ ABC,
=> $$\angle A$$ + $$\angle B$$ + $$\angle C$$ = $$180^\circ$$
Using equation (i), => $$\angle B+140^\circ =180^\circ$$
=> $$\angle B = 180^\circ - 140^\circ = 40^\circ$$
Substituting it in equation (ii), we get :
=> $$\angle A + (3 \times 40^\circ)=180^\circ$$
=> $$\angle A=180^\circ-120^\circ$$
=> $$\angle A=60^\circ$$
=> Ans - (C)
Create a FREE account and get: