Find the value of $$\sqrt {30 + \sqrt{ 30 +\sqrt {30 + \sqrt { 30 + ... ... ... ... ... . \infty}}}}$$
Let $$\sqrt{30+\sqrt{30+\sqrt{30+\sqrt{30+................\infty}}}}=a$$
$$\Rightarrow$$ $$\sqrt{30+\sqrt{30+\sqrt{30+\sqrt{30+\sqrt{30+..........\infty}}}}}=a$$
$$\Rightarrow$$ $$\sqrt{30+a}=a$$
$$\Rightarrow$$ $$30+a=a^2$$
$$\Rightarrow$$ $$a^2-a-30=0$$
$$\Rightarrow$$ $$a^2-6a+5a-30=0$$
$$\Rightarrow$$ $$a\left(a-6\right)+5\left(a-6\right)=0$$
$$\Rightarrow$$Â $$\left(a-6\right)\left(a+5\right)=0$$
$$\Rightarrow$$ $$a-6=0$$  or  $$a+5=0$$
$$\Rightarrow$$ $$a=6$$   or  $$a=-5$$
$$a$$ cannot be negative
$$\Rightarrow$$ Â $$a=6$$
$$\therefore\ $$ $$\sqrt{30+\sqrt{30+\sqrt{30+\sqrt{30+................\infty}}}}=6$$
Hence, the correct answer is Option B
Create a FREE account and get: