The lengths of two diagonals of a rhombus are 24 cm and 32 cm. What is the side (in cm) of the rhombus?
Give : ABCD is a rhombus, AC = 24 cm and BD = 32 cm
To find : AB = ?
Solution : Diagonals of a rhombus bisect each other at right angle.
=> OA = $$\frac{24}{2}=12$$ cm and OBÂ = $$\frac{32}{2}=16$$ cm
Thus, in $$\triangle$$ OAB,
=> $$(AB)^2=(OA)^2+(OB)^2$$
=> $$(AB)^2=(12)^2+(16)^2$$
=> $$(AB)^2=144+256=400$$
=> $$AB=\sqrt{400}=20$$ cm
=> Ans - (A)
Create a FREE account and get: