In the given figure, the ratio of the area of the largest square to that of the smallest square is:
From the figure,
$$r_2=b$$
From $$\triangle\ $$OAB,
$$r_1^2=a^2+a^2$$
$$=$$> Â $$r_1^2=2a^2$$
$$=$$> Â $$a^2=\frac{r_1^2}{2}$$
From $$\triangle\ $$OCD,
$$r_2^2=r_1^2+r_1^2$$
$$=$$> Â $$r_2^2=2r_1^2$$
$$\therefore\ $$Ratio of the area of the largest square to that of smallest square = $$\left(2b\right)^2\ :\ \left(2a\right)^2$$ =Â $$b^2\ :\ a^2$$
$$=r_2^2\ :\ \frac{r_1^2}{2}$$
$$=2r_1^2\ :\ \frac{r_1^2}{2}$$
$$=2\ :\ \frac{1}{2}$$
$$=4\ :\ 1$$
Hence, the correct answer is Option A
Create a FREE account and get: