In the given figure, AP is perpendicular to BC, and AQ is the bisector of angle A. What will be the measure of angle PQA ?
From the given figure,
In $$\triangle\ $$ABC,
$$\angle\ $$A + $$\angle\ $$B +Â $$\angle\ $$C =Â $$180^{\circ\ }\ $$
$$=$$>Â $$\angle\ $$A +Â $$60^{\circ}$$ + $$30^{\circ}$$ = $$180^{\circ\ }$$
$$=$$> Â $$\angle\ $$A = $$180^{\circ}-90^{\circ}$$
$$=$$> Â $$\angle\ $$A = $$90^{\circ}$$
AQ is the bisector of angle A
$$=$$> Â $$\angle\ $$BAQ = $$\frac{90^{\circ}}{2}$$
$$=$$> Â $$\angle\ $$BAQ =Â $$45^{\circ}$$
In $$\triangle\ $$ABQ,
$$\angle\ $$BAQ + $$\angle\ $$ABQ + $$\angle\ $$BQA = $$180^{\circ\ }\ $$
$$=$$> Â $$45^{\circ}$$ + $$60^{\circ}$$ + $$\angle\ $$BQA = $$180^{\circ\ }$$
$$=$$> $$\angle\ $$BQA = $$180^{\circ}-105^{\circ}$$
$$=$$> $$\angle\ $$BQA = $$75^{\circ}$$
$$=$$> $$\angle\ $$PQA = $$\angle\ $$BQA = $$75^{\circ}$$
Hence, the correct answer is Option C
Create a FREE account and get: