If the height of an equilateral triangle is 20$$\surd2$$ cm, then what is its area (in cm$$^2$$)?
The height of an equilateral triangle is 20$$\surd2$$ cm.
height = h = 20$$\surd2$$ cm
As per Pythagoras theorem, $$a^2\ =\ \left(\frac{a}{2}\right)^2\ +\ h^2$$
$$a^2\ =\ \frac{a^2}{4}\ +\ \left(20\surd2\right)^2$$
$$\frac{3a^2}{4} = 800$$
$$a^2 = \frac{3200}{3}$$
a = $$\frac{40\sqrt{\ 2}}{\sqrt{\ 3}}$$
area of equilateral triangle = $$\frac{1}{2}\times\ a \times\ h$$
$$=\frac{1}{2}\times\ \frac{40\sqrt{\ 2}}{\sqrt{\ 3}}\times\ 20\surd2$$
$$=\frac{1}{2}\times\ \frac{40}{\sqrt{\ 3}}\times\ 40$$
$$=\frac{20}{\sqrt{\ 3}}\times\ 40$$
$$=\frac{800}{\sqrt{\ 3}} $$
Multiply by $$\sqrt{\ 3}$$ in numerator and denominator.
$$=\frac{800}{\sqrt{\ 3}}\times\ \frac{\sqrt{\ 3}}{\sqrt{\ 3}}$$
$$=\frac{800}{3}\sqrt{3}$$
Create a FREE account and get: