If $$\frac{1}{1 - \sin \theta} + \frac{1}{1 + \sin \theta} = 4 \sec \theta, 0^\circ < \theta < 90^\circ$$, then the value of $$\cot\theta+\operatorname{cosec}\theta$$ is:
$$\frac{1}{1-\sin\theta}+\frac{1}{1+\sin\theta}=4\sec\theta$$
$$\frac{1+\sin\theta\ +1-\sin\theta\ }{1-\sin^2\theta}=\frac{4}{\cos\theta}$$
$$\frac{2}{\cos^2\theta}=\frac{4}{\cos\theta}$$
$$\cos\theta=\frac{1}{2}$$
$$0^\circ < \theta < 90^\circ$$
$$\Rightarrow$$Â Â $$\theta=60^{\circ}$$
$$\cot\theta+\operatorname{cosec}\theta=\cot60^{\circ}+\operatorname{cosec}60^{\circ}$$
=Â $$\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{3}}$$
=Â $$\frac{3}{\sqrt{3}}$$
=Â $$\sqrt{3}$$
Hence, the correct answer is Option B
Create a FREE account and get: