$$a\sin A+b\cos A=c\ $$
$$=$$> Â $$\left(a\sin A+b\cos A\right)^2=c^2\ $$
$$=$$> Â $$a^2\sin^2A+b^2\cos^2A+2ab\sin A\cos A=c^2\ $$
$$=$$> Â $$a^2\sin^2A+b^2\left(1-\sin^2A\right)+2ab\sin A\cos A=c^2\ $$
$$=$$> Â $$\left(a^2-b^2\right)\sin^2A+b^2+2ab\sin A\cos A=c^2\ $$
$$=$$> Â $$\left(a^2-b^2\right)\sin^2A+2ab\sin A\cos A=c^2\ -b^2$$ ..........(1)
Let $$a\cos A-b\sin A=x$$
$$=$$> Â $$\left(a\cos A-b\sin A\right)^2=x^2$$
$$=$$> Â $$a^2\cos^2A+b^2\sin^2A-2ab\cos A\sin A=x^2$$
$$=$$> Â $$a^2\left(1-\sin^2A\right)+b^2\sin^2A-2ab\cos A\sin A=x^2$$
$$=$$> Â $$a^2+\left(b^2-a^2\right)\sin^2A-2ab\cos A\sin A=x^2$$
$$=$$> Â $$a^2-\left[\left(a^2-b^2\right)\sin^2A+2ab\sin A\cos A\right]=x^2$$
$$=$$> Â $$a^2-\left[c^2-b^2\right]=x^2$$
$$=$$> Â $$a^2-c^2+b^2=x^2$$
$$=$$>Â $$x=\sqrt{a^2+b^2-c^2}$$
$$\therefore\ a\cos A-b\sin A=\sqrt{a^2+b^2-c^2}$$
Hence, the correct answer is Option A
Create a FREE account and get: