A sum doubles in seven years at simple interest. In how many years will the sum become five times the original sum?
A sum doubles in seven years at simple interest.
P =Â principal amount
R = rate of interest
T = time
$$2P=P+\frac{\left(P\times\ R\times\ 7\right)}{100}$$
$$2P-P=\frac{\left(P\times\ R\times\ 7\right)}{100}$$
$$P=\frac{\left(P\times\ R\times\ 7\right)}{100}$$
$$R=\frac{100}{7}$$Â Â Eq.(i)
Sum become five times the original sum.
$$5P=P+\frac{\left(P\times\ R\times\ T\right)}{100}$$
$$4P = \frac{\left(P\times\ R\times\ T\right)}{100}$$
$$4=\frac{\ R\times\ T}{100}$$
Put Eq.(i) in the above equation.
$$4=\frac{\ 100\times\ T}{7\times\ 100}$$
$$T=7\times\ 4$$
= 28 years
Create a FREE account and get: