The successive discounts are 10%,12% and 15%
Let the Initial value be 100. Â
According to question, $$100\times\ \frac{\left(100-10\right)}{100}\times\ \frac{\left(100-12\right)}{100}\times\ \frac{\left(100-15\right)}{100}$$
i.e;Â $$100\times\ \frac{90}{100}\times\ \frac{88}{100}\times\ \frac{85}{100}$$
Discounted value = 67.32 %Â
Equivalent discount = initial value - discounted valueÂ
= 100 - 67.32 = 32.68 .
Hence option A is correct.Â
Another method :Â
Discount is also called successive decreaseÂ
if x and y are two successive discounts then ,Â
$$x\ +\ y\ -\frac{\left(x\times\ y\right)}{100}$$
first we take first two discount 10% and 12%
$$\therefore\ 10\ +\ 12\ -\frac{10\times\ 12}{100}=\ 20.8\ \%$$
Now we take,Â
20.8% and 15% ,
$$\therefore\ 20.8\ +\ 15\ -\frac{20.8\times\ 15}{100}=\ 32.68\ \%$$
Create a FREE account and get: