Question 58

What is the rate of compound interest, if the interest on ₹10,000 for 2 years is ₹609, when interest is compounded annually?

Solution

$$compound\ interest=principal\left[\left(1+\frac{rate}{100}\right)^{time}\ -1\right]$$

$$609=10000\left[\left(1+\frac{rate}{100}\right)^2\ -1\right]$$

$$\frac{609}{10000}=\left[\left(1+\frac{rate}{100}\right)^2\ -1\right]$$

$$1+\frac{609}{10000}=\left[\left(1+\frac{rate}{100}\right)^2\ \right]$$

$$\frac{10609}{10000}=\left[\left(1+\frac{rate}{100}\right)^2\ \right]$$

$$\left(\frac{103}{100}\right)^2=\left[\left(1+\frac{rate}{100}\right)^2\ \right]$$

$$\frac{103}{100}=1+\frac{rate}{100}$$

$$\frac{103}{100}-1=\frac{rate}{100}$$

$$\frac{3}{100}=\frac{rate}{100}$$
So the rate of compound interest = 3% per annum

Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App