What is the rate of compound interest, if the interest on ₹10,000 for 2 years is ₹609, when interest is compounded annually?
$$compound\ interest=principal\left[\left(1+\frac{rate}{100}\right)^{time}\ -1\right]$$
$$609=10000\left[\left(1+\frac{rate}{100}\right)^2\ -1\right]$$
$$\frac{609}{10000}=\left[\left(1+\frac{rate}{100}\right)^2\ -1\right]$$
$$1+\frac{609}{10000}=\left[\left(1+\frac{rate}{100}\right)^2\ \right]$$
$$\frac{10609}{10000}=\left[\left(1+\frac{rate}{100}\right)^2\ \right]$$
$$\left(\frac{103}{100}\right)^2=\left[\left(1+\frac{rate}{100}\right)^2\ \right]$$
$$\frac{103}{100}=1+\frac{rate}{100}$$
$$\frac{103}{100}-1=\frac{rate}{100}$$
$$\frac{3}{100}=\frac{rate}{100}$$Create a FREE account and get: