In a $$\triangle$$ABC, $$\angle$$BAC = $$90^\circ$$ and AD is perpendicular to BC where D is a point on BC. If BD = 4 cm and CD = 5 cm,then the length of AD is equal to:
In $$\triangle$$ABC,
$$\angle$$A = 90$$^\circ$$
$$\Rightarrow$$ Â $$\angle$$B =Â 90$$^\circ$$ -Â $$\angle$$C
AD is perpendicular to BC
$$\Rightarrow$$ Â $$\angle$$ADC =Â 90$$^\circ$$
In $$\triangle$$ADC,
$$\angle$$ADC = 90$$^\circ$$
$$\Rightarrow$$ Â $$\angle$$DAC =Â 90$$^\circ$$ - $$\angle$$C
In $$\triangle$$ADB and $$\triangle$$CDA,
$$\angle$$B = $$\angle$$DAC =Â 90$$^\circ$$ - $$\angle$$C
$$\angle$$BDA = $$\angle$$ADC = 90$$^\circ$$
Two angles are equal for both the triangles, $$\triangle$$ADB is similar to $$\triangle$$CDA
Ratio of respective sides are equal in both the triangles
$$\Rightarrow$$ Â $$\frac{BD}{AD}=\frac{AD}{CD}$$
$$\Rightarrow$$Â AD$$^2$$ = BD.CD
$$\Rightarrow$$Â Â AD$$^2$$ = 4 x 5
$$\Rightarrow$$ Â AD$$^2$$ =Â 20
$$\Rightarrow$$Â AD =Â $$2 \sqrt 5$$ cm
Hence, the correct answer is Option B
Create a FREE account and get: