Given that,
$$x + y = 1$$
$$\Rightarrow xy(xy-2)=12$$
$$\Rightarrow x^2 y^2-2xy=12$$
$$\Rightarrow x + y = 1$$
Now, squaring both side,
$$\Rightarrow (x + y)^2 = 1$$
$$\Rightarrow x^2+y^2+2xy = 1$$
$$\Rightarrow x^2+y^2 = 1-2xy$$
Again squaring both side,
$$\Rightarrow (x^2+y^2)^2 = (1-2xy)^2$$
$$\Rightarrow x^4+y^4+2x^2y^2 = 1+4x^2y^2-4xy$$
$$\Rightarrow x^4+y^4 = 1+4x^2y^2-4xy-2x^2y^2$$
$$\Rightarrow x^4+y^4 = 1+2x^2y^2-4xy$$
$$\Rightarrow x^4+y^4 = 1+2(x^2y^2-2xy)=1+2\times 12=25$$
Create a FREE account and get: