If $$\sin x - \cos x = 0, 0^\circ < x < 90^\circ$$ then the value of $$(\sec x + cosec x)^2$$ is:
$$\sin x-\cos x=0$$
$$=$$> Â $$\sin x=\cos x$$
$$=$$> Â $$\frac{\sin x}{\cos x}=1$$
$$=$$> Â $$\tan x=1$$
$$=$$> Â $$x=45^{\circ\ }$$ Â ($$0^\circ < x < 90^\circ$$)
$$\therefore\ $$ $$\left(\sec x+\operatorname{cosec}x\right)^2$$ = $$\left(\sec45^{\circ\ }+\operatorname{cosec}45^{\circ\ }\right)^2$$
= $$\left(\sqrt{2}+\sqrt{2}\right)^2$$
= $$\left(2\sqrt{2}\right)^2$$
= $$4\left(2\right)$$
=Â $$8$$
Hence, the correct answer is Option C
Create a FREE account and get: