If $$\cos3\theta=\sin(\theta-34^{\circ})$$, then the value of $$\theta$$ as an acute angle is:
Given, Â $$\cos3\theta=\sin(\theta-34^{\circ})$$
$$\Rightarrow$$ Â $$\cos3\theta=\cos\left[90-(\theta-34^{\circ})\right]$$
$$\Rightarrow$$ Â $$\cos3\theta=\cos\left[90-\theta+34^{\circ}\right]$$
$$\Rightarrow$$ Â $$\cos3\theta=\cos\left[124^{^{\circ}}-\theta\right]$$
$$\Rightarrow$$ Â $$3\theta=124^{^{\circ}}-\theta$$
$$\Rightarrow$$ Â $$4\theta=124^{^{\circ}}$$
$$\Rightarrow$$ Â $$\theta=31^{^{\circ}}$$
Hence, the correct answer is Option C
Create a FREE account and get: