If a + b + c = 10 and ab + bc + ca = 32 then $$a^3 + b^3 + c^3 - 3abc$$ is equal to:
$$a^3 + b^3 + c^3 - 3abc = (a + b +c)(a^2 + b^2 + c^2 -ab -bc -ca)$$
First calculate $$a^2 + b^2 + c^2$$,
$$(a + b +c)^2 =Â a^2 + b^2 + c^2 + 2(ab + bc + ca)$$
$$ a^2 + b^2 + c^2 = 100 - 64 = 36$$
Putting this value in equation 1 , we get ,
$$a^3 + b^3 + c^3 - 3abc = 10 (36 - 32) = 40$$
So , the answer would be option b)40.
Create a FREE account and get: