Question 58

If $$a : b = 2 : 3  and   b : c = 2: 3$$, then what is the value of $$(3a^2 + b^2 + c^2) : (a^2 + 2b^2 + c^2)?$$

Solution

$$a : b = 2 : 3$$ and $$b : c = 2 : 3$$

a : b : c = $$2\times2$$ : $$3\times2$$ : $$3\times3$$

= 4 : 6 : 9

Let's assume a = 4z, b = 6z and c = 9z.

$$(3a^2 + b^2 + c^2) : (a^2 + 2b^2 + c^2)$$ = $$(3\times\left(4z\right)^2+\left(6z\right)^2+\left(9z\right)^2)\ :\ (\left(4z\right)^2+2\times\left(6z\right)^2+\left(9z\right)^2)$$

= $$(3\times16z^2+36z^2+81z^2)\ :\ (16z^2+2\times36z^2+81z^2)$$

= $$(48z^2+36z^2+81z^2)\ :\ (16z^2+72z^2+81z^2)$$

= $$(165z^2)\ :\ (169z^2)$$

= $$165 : 169$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App