If $$3 \sin \theta = 4 \cos \theta, then \tan^2 \theta + \sin \theta - \cos \theta$$ is equal to:
Given that,
$$3 \sin \theta = 4 \cos \theta$$
$$\tan \theta=\dfrac{4}{3}$$
Let AB=4 and BC=3
From the phythagoras theorem,
$$AB^2+BC^2=AC^2$$
Now, substituting the values,
$$\Rightarrow AC=\sqrt{AB^2+BC^2}$$
$$\Rightarrow AC=\sqrt{4^2+3^2}$$
$$\Rightarrow AC=\sqrt{25}=5$$
Now, substituting the values in $$\tan^2 \theta + \sin \theta - \cos \theta$$
$$\Rightarrow \dfrac{4}{3}^2+\dfrac{4}{5}-\dfrac{3}{5}$$
$$\Rightarrow \dfrac{16}{9}+\dfrac{4-1}{5}$$
$$\Rightarrow \dfrac{16}{9}+\dfrac{1}{5}$$
$$\Rightarrow \dfrac{80}{45}+\dfrac{9}{45}$$
$$\Rightarrow \dfrac{89}{45}$$
Create a FREE account and get: