A quadratic equation : $$ax^2 + bx + c = 0$$ has real roots iff Discriminant, $$D = b^2 - 4ac \geq 0$$
(A) : $$4x^2 - 7x + 5 = 0$$
=> D = $$(-7)^2 - 4(4)(5) = 49 - 80 = -31$$
(B) :Â $$5x^2 - 11x + 7 = 0$$
=>Â D = $$(-11)^2 - 4(5)(7) = 121 - 140 = -19$$
(C) :Â $$5x^2 - 11x + 8 = 0$$
=> D = $$(-11)^2 - 4(5)(8) = 121 - 160 = -39$$
(D) :Â $$2x^2 - 7x + 5 = 0$$
=>Â D = $$(-7)^2 - 4(2)(5) = 49 - 40 = 9$$
Thus, the equation :Â $$2x^2 - 7x + 5 = 0$$ has real roots.
Create a FREE account and get: