$$\triangle$$ABC $$\sim$$ $$\triangle$$PQR and PQ = 6 cm, QR = 8 cm and PR = 10 cm.If ar($$\triangle$$ABC) : ar($$\triangle$$PQR) = 1 : 4, then AB is equal to:
Given that,
$$\triangle$$ABC $$\sim$$ $$\triangle$$PQR
PQ = 6 cm, QR = 8 cm and PR = 10 cm
ar($$\triangle$$ABC) : ar($$\triangle$$PQR) = 1 : 4
Now as per the theorem of similarity of triangle,
$$\dfrac{ar(\triangle ABC)}{ar(\triangle PQR)}=\dfrac{AB^2}{PQ^2}=\dfrac{BC^2}{QR^2}=\dfrac{AC^2}{PR^2}$$
Now substituting the values,
$$\dfrac{AB^2}{PQ^2}=\dfrac{1}{4}-------(i)$$
taking square root of both side of equation (i) and substituting the values
$$\Rightarrow \dfrac{AB}{8}=\dfrac{1}{2}$$
$$\Rightarrow AB=\dfrac{8}{2}=4$$cm
Create a FREE account and get: