Question 57

The sides AB and AC of $$\triangle$$ABC are produced to points D and E, respectively. The bisectors of $$\angle$$CBD and $$\angle$$BCE meet at P If $$\angle$$A = $$72^\circ$$, then the measure of $$\angle$$P is:

Solution

When the bisectors of $$\angle$$CBD and $$\angle$$BCE meet at P, then $$\angle$$P = $$90^{\circ\ }-\frac{\angle\ BAC}{2}$$

= $$90^{\circ\ }-\frac{72^{\circ\ }}{2}$$

= $$90^{\circ\ }-36^{\circ\ }$$

= $$54^{\circ\ }$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App