Ina circle with centre O, AB is the diameter and CD is a chord such that ABCD is a trapezium. If $$\angle$$BAC =$$18^\circ$$, then $$\angle$$CAD is equal to:
$$\angle\ BAC\ =\ 18$$
$$\angle\ ACB=90\ $$ (Angle on semicircle)
ABCD is a trapezium, so AB is parallel to CD
$$\angle\ ACD=\angle\ BAC=18$$ (Alternate angle)
$$\angle\ BCD=\angle\ ACB+\angle\ ACD=90+18=108$$
ABCD is a cyclic quadrilateral because all point lies on same circle
$$\angle\ BAD+\angle\ BCD=180$$
$$\angle\ BAD+108=180$$
$$\angle\ BAD=72$$
$$\angle\ BAD=\angle\ BAC+\angle\ CAD$$
$$72=18+\angle\ CAD$$
$$\angle\ CAD=72-18=54$$
Create a FREE account and get: