In the given figure, if AC, DE are parallel and $$\angle$$CAB = 38$$^\circ$$, then the value of $$\angle$$ABC + 5$$\angle$$CBD is:
Given,
$$\angle$$CAB = 38$$^\circ$$
$$=$$>Â 2a =Â 38$$^\circ$$
$$=$$>Â Â a =Â 19$$^\circ$$
$$=$$>Â $$\angle$$CBD =Â 19$$^\circ$$
AB is the transversal intersecting parallel lines AC and DE
$$\therefore\ $$Alternate interior angles are equal
$$=$$> Â $$\angle$$ABE =Â $$\angle$$CAB
$$=$$> Â $$\angle$$ABE =Â 38$$^\circ$$
$$\angle$$ABE +Â $$\angle$$ABC +Â $$\angle$$CBD =Â 180$$^\circ$$
$$=$$> Â 38$$^\circ$$ +Â $$\angle$$ABC +Â 19$$^\circ$$ =Â 180$$^\circ$$
$$=$$> Â $$\angle$$ABC +Â 57$$^\circ$$ =Â 180$$^\circ$$
$$=$$> Â $$\angle$$ABC = 180$$^\circ$$ - Â 57$$^\circ$$
$$=$$> Â $$\angle$$ABC = 123$$^\circ$$
$$\therefore\ $$Â $$\angle$$ABC + 5$$\angle$$CBD =Â 123$$^\circ$$ +Â $$5\left(19^{\circ\ }\right)$$ =Â 123$$^\circ$$ + 95$$^\circ$$ = 218$$^\circ$$
Hence, the correct answer is Option B
Create a FREE account and get: