Question 56

If $$\sqrt{\frac{(1 - cosA)}{2}}=x$$, then the value of x is

Solution

Using double angle formula, we know that $$cos(2\theta) = cos^2\theta - sin^2\theta$$

=> $$cos(2\theta) = (1 - sin^2\theta) - sin^2\theta$$

=> $$cos(2\theta) = 1 - 2sin^2\theta$$

Replacing $$\theta$$ by $$\frac{A}{2}$$, we get :

=> $$cos A = 1 - 2sin^2(\frac{A}{2})$$

=> $$1 - cos A = 2sin^2(\frac{A}{2})$$

=> $$\frac{(1 - cos A)}{2} = sin^2(\frac{A}{2})$$

=> $$\sqrt{\frac{(1 - cos A)}{2}} = sin(\frac{A}{2})$$

=> Ans - (C)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App