If $$\left[\left\{\left(\frac{2}{3}\right)^3\right\}^{(2x + 3)}\right]^{\frac{-3}{4}} = \left[\left\{\left(\frac{2}{3}\right)^{\frac{2}{3}}\right\}^{(3x + 7)}\right]^{\frac{-6}{5}}$$ then the value of $$\sqrt{2-42x}$$ is:
Given,
$$\left[\left\{\left(\frac{2}{3}\right)^3\right\}^{(2x + 3)}\right]^{\frac{-3}{4}} = \left[\left\{\left(\frac{2}{3}\right)^{\frac{2}{3}}\right\}^{(3x + 7)}\right]^{\frac{-6}{5}}$$
$$=$$> Â $$\left\{\left(\frac{2}{3}\right)^3\right\}^{\frac{-3}{4}(2x+3)}=\left\{\left(\frac{2}{3}\right)^{\frac{2}{3}}\right\}^{\frac{-6}{5}(3x+7)}$$
$$=$$> Â $$\left(\frac{2}{3}\right)^{\frac{-9}{4}(2x+3)}=\left(\frac{2}{3}\right)^{\frac{-12}{15}(3x+7)}$$
$$=$$> Â $$\frac{-9}{4}(2x+3)=\frac{-12}{15}(3x+7)$$
$$=$$> Â $$45(2x+3)=16(3x+7)$$
$$=$$> Â $$90x+135=48x+112$$
$$=$$> Â $$42x=-23$$
$$\therefore\ \sqrt{2-42x}=\sqrt{2-\left(-23\right)}=\sqrt{2+23}=\sqrt{25}=5$$
Hence, the correct answer is Option B
Create a FREE account and get: