Given, $$a^3+b^3=1344$$ and $$a+b=28$$
$$=$$> $$\left(a+b\right)\left(a^2-ab+b^2\right)=1344$$
$$=$$> $$28\left(a^2-ab+b^2-2ab+2ab\right)=1344$$
$$=$$> $$\left(a+b\right)^2-3ab=\frac{1344}{28}$$
$$=$$> $$\left(a+b\right)^2-3ab=48$$
Hence, the correct answer is Option A
Create a FREE account and get: