Question 56

If $$a^3 + b^3 = 1344  and  a + b = 28$$, then $$(a + b)^2 - 3ab$$ is equal to:

Solution

Given, $$a^3+b^3=1344$$ and $$a+b=28$$

$$=$$> $$\left(a+b\right)\left(a^2-ab+b^2\right)=1344$$

$$=$$> $$28\left(a^2-ab+b^2-2ab+2ab\right)=1344$$

$$=$$> $$\left(a+b\right)^2-3ab=\frac{1344}{28}$$

$$=$$> $$\left(a+b\right)^2-3ab=48$$

Hence, the correct answer is Option A


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App