If 5x - 3 ≥ 3 + x/2 and 4x - 2 ≤ 6 + x; then x can take which of the following values?
Expression 1 : 5x - 3 ≥ 3 + x/2
=> $$5x-\frac{x}{2} \geq 3+3$$
=> $$\frac{9x}{2} \geq 6$$
=> $$x \geq \frac{4}{3}$$ ------------(i)
Expression 2 : 4x - 2 ≤ 6 + x
=> $$4x-x \leq 6+2$$
=> $$3x \leq 8$$
=> $$x \leq \frac{8}{3}$$ ------------(ii)
Combining inequalities (i) and (ii), we get : $$\frac{4}{3} \leq x \leq \frac{8}{3}$$
The only value that $$x$$ can take among the given options = 2
=> Ans - (B)
Create a FREE account and get: