If $$2\cot\theta=3$$, then $$\frac{\sqrt{13}\cos\theta-3\tan\theta}{3\tan\theta+\sqrt{13}\sin\theta}$$ is:
Given, $$2\cot\theta=3$$
$$\Rightarrow$$ Â $$\cot\theta=\frac{3}{2}$$
$$\tan\theta=\frac{2}{3}$$
$$\operatorname{cosec}\theta\ =\sqrt{1+\cot^2\theta\ }=\sqrt{1+\left(\frac{3}{2}\right)2}=\sqrt{1+\frac{9}{4}}=\sqrt{\frac{13}{4}}=\frac{\sqrt{13}}{2}$$
$$\sin\theta\ =\frac{2}{\sqrt{13}}$$
$$\cos\theta\ =\sqrt{1-\sin^2\theta\ }=\sqrt{1-\frac{4}{13}}=\sqrt{1-\left(\frac{2}{\sqrt{13}}\right)^2}=\sqrt{\frac{9}{13}}=\frac{3}{\sqrt{13}}$$
$$\therefore\ $$Â $$\frac{\sqrt{13}\cos\theta-3\tan\theta}{3\tan\theta+\sqrt{13}\sin\theta}=\frac{\sqrt{13}\left(\frac{3}{\sqrt{13}}\right)-3\left(\frac{2}{3}\right)}{3\left(\frac{2}{3}\right)+\sqrt{13}\left(\frac{2}{\sqrt{13}}\right)}$$
$$=\frac{3-2}{2+2}$$
$$=\frac{1}{4}$$
Hence, the correct answer is Option B
Create a FREE account and get: