In a circle with centre O, points A, B, C and D in this order are concyclic such that BD is a diameter of the circle. If $$\angle$$BAC = 22$$^\circ$$, then find the measure (in degrees) of $$\angle$$COD.
Angle in a semicircle is right angle.
$$\Rightarrow$$Â $$\angle$$BAD = 90$$^\circ$$
$$\Rightarrow$$Â Â $$\angle$$BAC +Â $$\angle$$CAD =Â 90$$^\circ$$
$$\Rightarrow$$Â Â 22$$^\circ$$ +Â $$\angle$$CAD =Â 90$$^\circ$$
$$\Rightarrow$$Â Â $$\angle$$CAD =Â 68$$^\circ$$
Angle subtended by a chord at the center of the circle is twice the angle subtended by the chord on the point of a circle in the same segment.
$$\Rightarrow$$Â Â $$\angle$$COD = 2$$\angle$$CAD
$$\Rightarrow$$Â Â $$\angle$$COD =Â 136$$^\circ$$
Hence, the correct answer is Option B
Create a FREE account and get: