If $$x \cos A - y \sin A = 1$$ and $$x \sin A + y \cos A = 4$$, then the value of $$17x^{2} + 17y^{2}$$ is:
$$x \cos A - y \sin A=1$$
Take the square of both sides,
$$(x \cos A - y \sin A)^2=1$$
$$(x \cos A)^2 - 2xy \sin A \cos A +Â (y \sin A)^2Â = 1$$ ---(1)
($$\because (a + b)^2 = a^2 + b^2 + 2ab$$)
$$x \sin A + y \cos A = 4$$
Take the square of both sides,
$$(x \sin A + y \cos A)^2=16$$
$$(x \sin A)^2 + 2xy \sin A \cos A + (y \cos A)^2 =16$$ ---(2)
Addition of eq(1) and eq(2),
$$(x \cos A)^2 +Â (x \sin A)^2 +Â (y \sin A)^2 +Â (y \cos A)^2 = 17$$
$$x^2 + y^2 = 17$$
$$17x^{2}+17y^{2} = 17 \times 17$$
$$17x^{2}+17y^{2} = 289$$
Create a FREE account and get: