If $$\sin^2 \theta = 2 \sin \theta - 1, 0^\circ \leq \theta \leq 90^\circ $$, then find the value of: $$\frac{1 + \cosec \theta}{1 - \cos \theta}$$.
$$\sin^2\theta=2\sin\theta-1$$
$$\sin^2\theta-2\sin\theta+1=0$$
$$\left(\sin\theta-1\right)^2=0$$
$$\sin\theta-1=0$$
$$\sin\theta=1$$
$$0^{\circ}\le\theta\le90^{\circ}$$
$$\Rightarrow$$Â Â $$\theta=90^{\circ}$$
$$\frac{1+\operatorname{cosec}\theta}{1-\cos\theta}=\frac{1+\operatorname{cosec}90^{\circ\ }}{1-\cos90^{\circ\ }}$$
$$=\frac{1+1\ }{1-0\ }$$
$$=2$$
Hence, the correct answer is Option C
Create a FREE account and get: