If a + b + c = 11 and ab + bc + ca = 38, then $$a^3 + b^3 + c^3 - 3abc$$ is equal to:
$$(a + b + c)^2$$ = $$a^2+b^2+c^2+2(ab+bc+ca)$$
by using given data we can write has
$$11^2$$= $$a^2+b^2+c^2$$ + $$2 × 38$$
$$121$$= $$a^2+b^2+c^2$$ + $$76$$
$$121-76$$ = $$a^2+b^2+c^2$$
$$a^2+b^2+c^2$$= 45
$$a^3+b^3+c^3-3abc$$ =$$ (a+b+c)$$ $$(a^2+b^2+c^2-ab-bc-ca)$$
where $$(a+b+c)$$ = 11
$$a^2+b^2+c^2 $$= 45
and $$(ab+bc+ca)$$ = 38
Hence by applying to the formula
= $$11×(45-(38)$$
= $$11×(45-38)$$
= $$(11×7)$$
= 77
Create a FREE account and get: