Question 55

If $$29^{41} + 37^{41}$$ is divided by 33, then the reminder is:

Solution

$$29^{41}+37^{41}=\left(29+37\right)\left(29^{40}-29^{39}.37+29^{38}.37^2-....+37^{40}\right)$$

$$\Rightarrow$$  $$29^{41}+37^{41}=\left(66\right)\left(29^{40}-29^{39}.37+29^{38}.37^2-....+37^{40}\right)$$

$$\Rightarrow$$  $$29^{41}+37^{41}=33\left\{2\left(29^{40}-29^{39}.37+29^{38}.37^2-....+37^{40}\right)\right\}$$

$$\Rightarrow$$  $$29^{41}+37^{41} = 33k$$

$$\Rightarrow$$  $$29^{41}+37^{41}$$ is multiple of 33

$$\therefore\ $$When $$29^{41}+37^{41}$$ is divided by 33, the remainder is 0

Hence, the correct answer is Option A


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App