$$29^{41}+37^{41}=\left(29+37\right)\left(29^{40}-29^{39}.37+29^{38}.37^2-....+37^{40}\right)$$
$$\Rightarrow$$ Â $$29^{41}+37^{41}=\left(66\right)\left(29^{40}-29^{39}.37+29^{38}.37^2-....+37^{40}\right)$$
$$\Rightarrow$$ Â $$29^{41}+37^{41}=33\left\{2\left(29^{40}-29^{39}.37+29^{38}.37^2-....+37^{40}\right)\right\}$$
$$\Rightarrow$$ Â $$29^{41}+37^{41} = 33k$$
$$\Rightarrow$$Â $$29^{41}+37^{41}$$ is multiple of 33
$$\therefore\ $$When $$29^{41}+37^{41}$$ is divided by 33, the remainder is 0
Hence, the correct answer is Option A
Create a FREE account and get: